World-class training for the modern energy industry

Critical Resources – Rare Earth Elements (G530)

Tutor(s)

Holly Elliott: Minerals Geoscientist, British Geological Survey.

Overview

This course covers all aspects of rare earth elements (REE) as critical resources, both in terms of technological advancement and combating climate change. We shall delve into the major sources of these elements, their tectonic settings and the enrichment processes that lead to deposit formation. The characteristics of major REE deposits shall be investigated, using international case studies, to determine typical exploration methods and factors affecting processing.

Duration and Logistics

Classroom version: A 1.5-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Three 3.5-hour interactive online sessions presented over 3 days. A digital manual and exercise materials will be distributed to participants before the course. Some reading and exercises are to be completed by participants off-line.

Level and Audience

Intermediate. The course is intended for anyone with an intermediate knowledge of geological processes and exploration techniques.

Objectives

You will learn to:

  1. Understand the characteristics and behavior of REE in these geological environments.
  2. Understand the geological processes leading to formation of different deposit types.
  3. Understand and identify the multiple enrichment mechanisms that lead to REE-enrichment.
  4. Identify typical rocks and minerals associated with REE deposits.
  5. Evaluate typical features of REE deposits to determine appropriate exploration techniques.
  6. Interpret geochemical and exploration data associated with REE deposits.
  7. Assess the economic viability of deposits using typical characteristics.

Critical Minerals for the GeoEnergy Transition (G503)

Tutor(s)

Lucy Crane: ESG and Sustainability Consultant.

Overview

This course covers all aspects of the crucial role that mineral extraction will play in the energy transition. Building the low-carbon technologies required to combat climate change, such as wind turbines, electric vehicles and batteries, will be hugely mineral intensive. The impact of this increased extraction is often overlooked, yet it’s vital that these materials are sourced and extracted in the most responsible manner possible. This course explores where certain critical raw materials are currently produced and the impacts of their global supply chains, as well as examining how new technologies are aiding exploration for and extraction of new deposits. It also discusses challenges faced by responsible sourcing, and the growing importance of ESG within the mining industry.

Duration and Logistics

Classroom version: A 1.5-day course comprising a mix of lectures, case studies and exercises. The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Three 3.5-hour interactive online sessions presented over 3 days. A digital manual and exercise materials will be distributed to participants before the course. Some reading and exercises are to be completed by participants off-line.

Level and Audience

Fundamental. The course is intended for industry professionals, though it is suitable for penultimate year undergraduate university students and above.

Objectives

You will learn to:

  1. Understand the wider context behind the mineral intensity of the energy transition.
  2. Define what is a ‘critical’ raw material.
  3. Describe how new technologies are ‘unlocking’ mineral deposits which have previously been considered unconventional.
  4. Understand the technical challenges associated with production of certain critical raw materials.
  5. Describe how environmental, social and geopolitical factors can also influence an element’s ‘criticality’.
  6. Begin to evaluate the environmental and social impacts of current global supply chains.
  7. Understand the role mineral extraction has to play in delivering the UN Sustainable Development Goals, alongside various industry operating codes and principles.
  8. Assess the importance of Environmental, Social and Governance (ESG) factors in project success.